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Harmful algal blooms are a growing worldwide problem.1 Toxins
produced by some of these algae, including the neurotoxin domoic
acid (DomA), may reach humans through contaminated seafood
consumption.2,3 Because acute high-level exposure may cause
amnesic shellfish poisoning,4 countries around the world limit
DomA to 20 lg=g of shellfish tissue.5,6,7 However, relatively little
is known about the health effects of chronic low-level exposure
such as that experienced by people who regularly eat shellfish.8,9,10

In a recent study11 in Environmental Health Perspectives investi-
gators based at the Woods Hole Oceanographic Institution
(WHOI) in Massachusetts analyzed the developmental neurotoxic
effects of DomA in zebrafish to help fill this gap.

The researchers exposed zebrafish embryos and larvae to
DomA doses that were 3- to 260-fold lower than exposures tested
in earlier studies.12,13 Even the lowest nominal dose of 0:09 ng dur-
ing a defined developmental window caused behavioral deficits in
the larvae. The researchers causally linked these deficits to dis-
ruptedmyelination processes and altered gene expression.

Zebrafish have distinct advantages as a model organism.
Embryos are transparent during early development, and their nerv-
ous system structures are similar to those of humans. However, in

zebrafish these structures develop externally rather than hidden
inside a uterus. Thus, real-time imaging can reveal changes in la-
beled cells of interest during very early stages of development.

Instead of the usual method of adding the agent of interest to the
fish tanks, the researchers usedmicroinjection into a cardinal vein to
deliver a single dose of 0:09–0:18 ng of DomA to the embryos and
larvae. They administered doses at specific developmental periods
between 1 and 4 days postfertilization (dpf). “Microinjection
ensured that the desired dose reached the embryo and let us precisely
time exposures throughout development to home in on a critical
window,” says first author Jennifer M. Panlilio, who performed the
research as a doctoral student in a joint program betweenWHOI and
Massachusetts Institute of Technology.

Following the injection, fluorescence time-lapse microscopy
was used to track the movement of specialized cells in the spinal
cord and the formation of protective myelin sheaths around axons,
the part of the neuron that transmits electrical signals. Larval RNA
was sequenced at 3 and 7 dpf, and myelin structure was assessed at
5–7 dpf. At 7 dpf, the researchers measured the larvae’s startle
behavior in response to acoustic/vibrational stimuli. Well-known
neural circuits and cell types drive this behavior.14,15

Domoic acid is produced by algal species including members of the Pseudo-nitzschia genus (shown). It causes amnesic shellfish poisoning, a potentially fatal
illness that can strike people who eat contaminated seafood, such as clams, mussels, and crab. The disease was only discovered in 1987.3 Image: Pseudo-nitz-
schia: Vera Trainer/NOAA; razor clams: © iStockphoto/jack looney.
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Exposure to 0:09 ng DomA at 2 dpf had effects that were not
observed at 1 or 4 dpf. It reduced the expression of genes required
for maintaining axon and myelin structure, it produced structural
deficits in myelin sheaths, and it delayed and changed typical
motion features of the larvae’s startle response. However, it had no
appreciable effects onmortality or grossmorphology.

“Our novel finding is a narrow critical window of develop-
ment when DomA exposure disrupts the initial myelination of
axons,” says Panlilio. “This is a potential molecular basis for an
observable behavior, which provides an important functional end
point for future research.” Even if the end point is similar in other
organisms, she adds, the critical window may be different. The
myelination process in humans, for example, starts in utero and
continues throughout adolescence.

For Rebekah Petroff, whowas not involved in the new study, the
results are consistent with observations in rodents,16,17,18,19 marine
mammals,20,21 and nonhuman primates.22,23 Petroff, a postdoctoral
fellow at theUniversity ofMichigan, has studiedDomAneurotoxic-
ity in adult crab-eatingmacaques after low-level exposure.

“Disrupted myelination pathways are a plausible mechanism
for developmental end points that have been observed consis-
tently across species,” says Petroff. “However, it will be difficult
to translate how important these effects are until we know more
about human exposure levels.” For example, the DomA exposure
of fetuses and infants whose mothers consume contaminated
shellfish is currently unknown.

Jennifer Freeman, an associate professor of toxicology at
Purdue University, appreciates the study’s precise targeting of dif-
ferent developmental stages. “I think we need to do more of that in
developmental toxicology,” says Freeman, who also was not
involved in the project. “If you don’t capture the susceptible pe-
riod, youmay completelymiss an adverse health outcome.”

Freeman finds the alignment of multiple pieces of evidence for
the critical window of 2 dpf—namely, structural imaging, gene
expression analysis, and functional outcome—compelling and
considers it critical for regulating other environmental chemicals.

Although researchers have identified several algal genes that
produce DomA,24 we have only a limited understanding of the
environmental stressors that trigger production of the toxin.25

Rising sea surface temperatures are predicted to increase the fre-
quency of harmful algal blooms, including those with DomA-
producing Pseudo-nitzschia species.26 DomA may persist in
shellfish tissue long after the blooms dissipate, although substan-
tial between- and within-species variation complicates predic-
tions.27 “It’s a complex problem that’s challenging but important
to regulate,” concludes Petroff.

Silke Schmidt, Ph.D., writes about science, health, and the environment from
Madison, Wisconsin.
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